_neural_net
NeuralNetworkClassifier
⚓︎
NeuralNetworkClassifier
Feed Forward Neural Network Classifier with however many
dense layers (fully connected layers) of class DenseLayer
each with own
activation function and a network wide loss function.
The layers of the network can either be added when initilizing the network, as a list
or added individually with the add
method after initialization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
layers |
list, optional
|
A list of class |
[]
|
loss |
str, optional
|
The loss function to be used, currently only |
'cross_entropy'
|
Attributes:
Name | Type | Description |
---|---|---|
X |
2d ndarray
|
Data points to use for training the neural network |
y |
1d ndarray
|
Target classes |
n |
int
|
Number of data points (X.shape[0]) |
p |
int
|
Number of features (X.shape[1]) |
Source code in mlproject/neural_net/_neural_net.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
add(layer)
⚓︎
Add a new layer to the network, after the current layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
layer |
DenseLayer
|
Fully connected layer. |
required |
Example⚓︎
>>> NN = NeuralNetworkClassifier(loss='cross_entropy')
>>> NN.add(DenseLayer(784,128,"leaky_relu"))
>>> NN.add(DenseLayer(128,5,"softmax"))
>>> print(NN)
NeuralNetworkClassifier
--------------------------------
Loss function: cross_entropy_loss
Input layer:
Neurons: 128 , Activation: leaky_relu
Output layer:
Neurons: 5 , Activation: softmax
Source code in mlproject/neural_net/_neural_net.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
fit(X, y, batches=1, epochs=1000, lr=0.01)
⚓︎
The actual training of the network to the given data
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
2d ndarray
|
An \(N \times P\) matrix of data points where n is the number of data points and p is the number of features. |
required |
y |
1d ndarray
|
\(N \times 1\) vector of target class labels |
required |
batches |
int, optional
|
The number of batches to use for training in each epoch, an integer indicating the number of splits to split the data into, by default \(1\) which corresponds to training on the entire dataset in every epoch. |
1
|
epochs |
int, optional
|
The number of iterations to train for |
1000
|
lr |
float, optional
|
The learning rate for gradient descent |
0.01
|
Source code in mlproject/neural_net/_neural_net.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
forward(X)
⚓︎
Compute a single forward pass of the network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
2d ndarray
|
The data to use for the forward pass.
Must be of size n x input_n
where input_n must come from the first |
required |
Returns:
Type | Description |
---|---|
2d ndarray
|
An n x output_n array
where output_n corresponds to the output_n of the last |
Source code in mlproject/neural_net/_neural_net.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
predict(X)
⚓︎
Predict class labels for the given data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
2d ndarray
|
The data that we want to use to make predictions. |
required |
Returns:
Type | Description |
---|---|
1d ndarray
|
All predicted class labels with size n, where n is the number of data points. |
Source code in mlproject/neural_net/_neural_net.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
predict_proba(X)
⚓︎
Predict class probabilities for the given data
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
2d ndarray
|
The data that we want to use to make predictions |
required |
Returns:
Type | Description |
---|---|
2d ndarray
|
All probabilites with size n x k, where n is the number of data points and k is the number classes |
Source code in mlproject/neural_net/_neural_net.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|