Skip to content

_neural_net

NeuralNetworkClassifier ⚓︎

NeuralNetworkClassifier

Feed Forward Neural Network Classifier with however many dense layers (fully connected layers) of class DenseLayer each with own activation function and a network wide loss function. The layers of the network can either be added when initilizing the network, as a list or added individually with the add method after initialization.

Parameters:

Name Type Description Default
layers list, optional

A list of class DenseLayer

[]
loss str, optional

The loss function to be used, currently only cross_entropy is supported.

'cross_entropy'

Attributes:

Name Type Description
X 2d ndarray

Data points to use for training the neural network

y 1d ndarray

Target classes

n int

Number of data points (X.shape[0])

p int

Number of features (X.shape[1])

Source code in mlproject/neural_net/_neural_net.py
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
class NeuralNetworkClassifier:
    """NeuralNetworkClassifier

    Feed Forward Neural Network Classifier with however many
    dense layers (fully connected layers) of class [`DenseLayer`][mlproject.neural_net._dense_layer.DenseLayer] each with own
    activation function and a network wide loss function.
    The layers of the network can either be added when initilizing the network, as a list
    or added individually with the [`add`][mlproject.neural_net._neural_net.NeuralNetworkClassifier.add] method after initialization.

    Parameters
    ----------
    layers : list, optional
        A list of class [`DenseLayer`][mlproject.neural_net._dense_layer.DenseLayer]
    loss : str, optional
        The loss function to be used, currently only [`cross_entropy`][mlproject.neural_net._loss.cross_entropy_loss] is supported.

    Attributes
    ----------
    X : 2d ndarray
        Data points to use for training the neural network
    y : 1d ndarray
        Target classes
    n : int
        Number of data points (X.shape[0])
    p : int
        Number of features (X.shape[1])
    """

    def __init__(self, layers=[], loss="cross_entropy"):

        self.X = None
        self.n, self.p = None, None
        self.y = None
        self.k = None
        self.layers = layers
        self.activations, self.sums = [], []

        if loss == "cross_entropy":
            self.loss_str = "cross_entropy_loss"
            self.loss = cross_entropy_loss
        else:
            raise NotImplementedError(
                f"{loss} not implemented yet. Choose from ['cross_entropy']"
            )

    def add(self, layer: DenseLayer):
        """Add a new layer to the network, after the current layer.

        Parameters
        ----------
        layer : DenseLayer
            Fully connected layer.

        Example
        -------
        ``` py
        >>> NN = NeuralNetworkClassifier(loss='cross_entropy')
        >>> NN.add(DenseLayer(784,128,"leaky_relu"))
        >>> NN.add(DenseLayer(128,5,"softmax"))
        >>> print(NN)

        NeuralNetworkClassifier
        --------------------------------
        Loss function: cross_entropy_loss

        Input layer:
                Neurons: 128 , Activation: leaky_relu

        Output layer:
                Neurons: 5 , Activation: softmax
        ```
        """
        self.layers.append(layer)

    def forward(self, X):
        """Compute a single forward pass of the network.

        Parameters
        ----------
        X : 2d ndarray
            The data to use for the forward pass.
            Must be of size n x input_n
            where input_n must come from the first [`DenseLayer`][mlproject.neural_net._dense_layer.DenseLayer] in the network.

        Returns
        -------
        2d ndarray
            An n x output_n array
            where output_n corresponds to the output_n of the last [`DenseLayer`][mlproject.neural_net._dense_layer.DenseLayer] in the network
            and n is the number of data points.
        """
        self.activations.append(X)
        for layer in self.layers:
            X = layer.forward(X)
            self.activations.append(X)
            self.sums.append(layer.z)

        return X

    def predict(self, X):
        """Predict class labels for the given data.

        Parameters
        ----------
        X : 2d ndarray
            The data that we want to use to make predictions.

        Returns
        -------
        1d ndarray
            All predicted class labels with size n, where n is the number of data points.
        """
        probabilities = self.predict_proba(X)

        return np.array(
            [self.label[pred] for pred in np.argmax(probabilities, axis=1).astype(int)]
        )

    def predict_proba(self, X):
        """Predict class probabilities for the given data

        Parameters
        ----------
        X : 2d ndarray
            The data that we want to use to make predictions

        Returns
        -------
        2d ndarray
            All probabilites with size n x k, where n is the number of data points and k is the number classes
        """
        return self.forward(X)

    def fit(self, X, y, batches: int = 1, epochs: int = 1000, lr: float = 0.01):
        r"""The actual training of the network to the given data

        Parameters
        ----------
        X : 2d ndarray
            An $N \times P$ matrix of data points
            where n is the number of data points and p is the number of features.
        y : 1d ndarray
            $N \times 1$ vector of target class labels
        batches : int, optional
            The number of batches to use for training in each epoch,
            an integer indicating the number of splits to split the data into,
            by default $1$ which corresponds to training on the entire dataset
            in every epoch.
        epochs : int, optional
            The number of iterations to train for
        lr : float, optional
            The learning rate for gradient descent
        """

        self.X = X
        self.n, self.p = self.X.shape
        self.y = y
        self.learning_rate = lr

        unique_classes = np.unique(y)
        self.k = len(unique_classes)

        one_hot = OneHotEncoder(categories=[unique_classes])
        self.y_hot_encoded = one_hot.fit_transform(self.y).toarray()

        if self.layers[-1]._out_neurons() != self.k:
            raise ValueError(
                f"The number of neurons in the output layer, output_n: ({self.layers[-1].out_neurons()}) must be equal to the number of classes, k: ({self.k})"
            )
        if self.layers[0]._in_neurons() != self.X.shape[1]:
            raise ValueError(
                f"The number of neurons in the input layer, input_n: ({self.layers[0].in_neurons()}) must be equal to the number features in the dataset: ({self.X.shape[1]})"
            )

        # populate label-intcode dictionaries
        self.label = {k: unique_classes[k] for k in range(self.k)}
        self.intcode = {unique_classes[k]: k for k in range(self.k)}

        self.loss_history = []
        self.accuracy_history = []

        # get indices of every data point
        idxs = np.arange(self.n)

        with progress as pb:
            t1 = pb.add_task("[blue]Training", total=epochs)

            for epoch in range(epochs):

                # randomly shuffle the data --> split it into number of batches
                # here np.array_split returns an array of arrays of indices
                # of the different splits
                np.random.shuffle(idxs)
                batch_idxs = np.array_split(idxs, batches)

                for batch in batch_idxs:

                    X_batch = self.X[batch]
                    y_batch = self.y_hot_encoded[batch]

                    # compute the initial class probabilities by doing a single forward pass
                    # note: this should come 'automatically' from defining the last layer
                    # in the model as a layer with output_n = k with softmax activation
                    # where k is the number of classes.
                    init_probs = self.forward(X_batch)
                    if np.isnan(init_probs).any() or np.isinf(init_probs).any():
                        raise ValueError(
                            f"Unexpected value for init_probs, please try different parameters for either `batches`, `epocs` or `lr`"
                        )

                    # dividide by the number of data points in this specific batch to get the average loss.
                    loss = self.loss(y_batch, init_probs) / len(y_batch)
                    if np.isnan(loss) or np.isinf(loss):
                        raise ValueError(
                            f"Unexpected value for loss, please try different parameters for either `batches`, `epocs` or `lr`"
                        )

                    self._backward(y_batch)

                # add the latest loss to the history
                self.loss_history.append(loss)

                # predict with the current weights and biases on the whole data set
                batch_predict = self.predict(self.X)

                # calculate the accuracy score of the prediction
                train_accuracy = accuracy_score(self.y, batch_predict)

                # add accuracy to the history
                self.accuracy_history.append(train_accuracy)

                # update rich progress bar for each epoch
                pb.update(t1, advance=1)

                if progress.finished:
                    pb.update(t1, description="[bright_green]Training complete!")

    def _backward(self, y_batch):
        """Computes a single backward pass all the way through the network.
        Also updates the weights and biases.

        Parameters
        ----------
        y_batch : 2d ndarray
            array of one-hot encoded ground_truth labels
        """

        # This is the derivative of loss function w.r.t Z. Explanation here https://www.mldawn.com/back-propagation-with-cross-entropy-and-softmax/
        delta = self.activations[-1] - y_batch

        grad_bias = delta.sum(0)

        grad_weight = self.activations[-2].T @ delta

        grad_biases, grad_weights = [], []
        grad_weights.append(grad_weight)
        grad_biases.append(grad_bias)

        for i in range(2, len(self.layers) + 1):
            layer = self.layers[-i + 1]
            dzda = delta @ layer.weights.T
            delta = dzda * leaky_relu_der(self.sums[-i])

            grad_bias = delta.sum(0)
            grad_weight = self.activations[-i - 1].T @ delta
            grad_weights.append(grad_weight)
            grad_biases.append(grad_bias)

        # reverse the gradient lists so we can index them normally.
        grad_biases_rev = list(reversed(grad_biases))
        grad_weights_rev = list(reversed(grad_weights))

        for i in range(0, len(self.layers)):
            self.layers[i].weights -= self.learning_rate * grad_weights_rev[i]
            self.layers[i].biases -= self.learning_rate * grad_biases_rev[i]

    def __str__(self):
        s = "\nNeuralNetworkClassifier \n"
        s += "--------------------------------\n"
        s += f"Loss function: {self.loss_str}\n\n"
        layers = [self.layers[i] for i in range(0, len(self.layers))]
        layers_neu = [
            f"\tInput: {i.input_n}, Output: {i.output_n} , Activation: {i.activation_function()}"
            for i in layers
        ]
        layer_num = 0
        for layer in layers_neu:
            if layer_num == 0:
                s += "Input layer: \n" + layer + "\n\n"
            elif layer_num == len(self.layers) - 1:
                s += f"Output layer: \n" + layer
            else:
                s += f"Layer: {layer_num}\n" + layer + "\n\n"
            layer_num += 1

        return s

add(layer) ⚓︎

Add a new layer to the network, after the current layer.

Parameters:

Name Type Description Default
layer DenseLayer

Fully connected layer.

required
Example⚓︎
>>> NN = NeuralNetworkClassifier(loss='cross_entropy')
>>> NN.add(DenseLayer(784,128,"leaky_relu"))
>>> NN.add(DenseLayer(128,5,"softmax"))
>>> print(NN)

NeuralNetworkClassifier
--------------------------------
Loss function: cross_entropy_loss

Input layer:
        Neurons: 128 , Activation: leaky_relu

Output layer:
        Neurons: 5 , Activation: softmax
Source code in mlproject/neural_net/_neural_net.py
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
def add(self, layer: DenseLayer):
    """Add a new layer to the network, after the current layer.

    Parameters
    ----------
    layer : DenseLayer
        Fully connected layer.

    Example
    -------
    ``` py
    >>> NN = NeuralNetworkClassifier(loss='cross_entropy')
    >>> NN.add(DenseLayer(784,128,"leaky_relu"))
    >>> NN.add(DenseLayer(128,5,"softmax"))
    >>> print(NN)

    NeuralNetworkClassifier
    --------------------------------
    Loss function: cross_entropy_loss

    Input layer:
            Neurons: 128 , Activation: leaky_relu

    Output layer:
            Neurons: 5 , Activation: softmax
    ```
    """
    self.layers.append(layer)

fit(X, y, batches=1, epochs=1000, lr=0.01) ⚓︎

The actual training of the network to the given data

Parameters:

Name Type Description Default
X 2d ndarray

An \(N \times P\) matrix of data points where n is the number of data points and p is the number of features.

required
y 1d ndarray

\(N \times 1\) vector of target class labels

required
batches int, optional

The number of batches to use for training in each epoch, an integer indicating the number of splits to split the data into, by default \(1\) which corresponds to training on the entire dataset in every epoch.

1
epochs int, optional

The number of iterations to train for

1000
lr float, optional

The learning rate for gradient descent

0.01
Source code in mlproject/neural_net/_neural_net.py
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def fit(self, X, y, batches: int = 1, epochs: int = 1000, lr: float = 0.01):
    r"""The actual training of the network to the given data

    Parameters
    ----------
    X : 2d ndarray
        An $N \times P$ matrix of data points
        where n is the number of data points and p is the number of features.
    y : 1d ndarray
        $N \times 1$ vector of target class labels
    batches : int, optional
        The number of batches to use for training in each epoch,
        an integer indicating the number of splits to split the data into,
        by default $1$ which corresponds to training on the entire dataset
        in every epoch.
    epochs : int, optional
        The number of iterations to train for
    lr : float, optional
        The learning rate for gradient descent
    """

    self.X = X
    self.n, self.p = self.X.shape
    self.y = y
    self.learning_rate = lr

    unique_classes = np.unique(y)
    self.k = len(unique_classes)

    one_hot = OneHotEncoder(categories=[unique_classes])
    self.y_hot_encoded = one_hot.fit_transform(self.y).toarray()

    if self.layers[-1]._out_neurons() != self.k:
        raise ValueError(
            f"The number of neurons in the output layer, output_n: ({self.layers[-1].out_neurons()}) must be equal to the number of classes, k: ({self.k})"
        )
    if self.layers[0]._in_neurons() != self.X.shape[1]:
        raise ValueError(
            f"The number of neurons in the input layer, input_n: ({self.layers[0].in_neurons()}) must be equal to the number features in the dataset: ({self.X.shape[1]})"
        )

    # populate label-intcode dictionaries
    self.label = {k: unique_classes[k] for k in range(self.k)}
    self.intcode = {unique_classes[k]: k for k in range(self.k)}

    self.loss_history = []
    self.accuracy_history = []

    # get indices of every data point
    idxs = np.arange(self.n)

    with progress as pb:
        t1 = pb.add_task("[blue]Training", total=epochs)

        for epoch in range(epochs):

            # randomly shuffle the data --> split it into number of batches
            # here np.array_split returns an array of arrays of indices
            # of the different splits
            np.random.shuffle(idxs)
            batch_idxs = np.array_split(idxs, batches)

            for batch in batch_idxs:

                X_batch = self.X[batch]
                y_batch = self.y_hot_encoded[batch]

                # compute the initial class probabilities by doing a single forward pass
                # note: this should come 'automatically' from defining the last layer
                # in the model as a layer with output_n = k with softmax activation
                # where k is the number of classes.
                init_probs = self.forward(X_batch)
                if np.isnan(init_probs).any() or np.isinf(init_probs).any():
                    raise ValueError(
                        f"Unexpected value for init_probs, please try different parameters for either `batches`, `epocs` or `lr`"
                    )

                # dividide by the number of data points in this specific batch to get the average loss.
                loss = self.loss(y_batch, init_probs) / len(y_batch)
                if np.isnan(loss) or np.isinf(loss):
                    raise ValueError(
                        f"Unexpected value for loss, please try different parameters for either `batches`, `epocs` or `lr`"
                    )

                self._backward(y_batch)

            # add the latest loss to the history
            self.loss_history.append(loss)

            # predict with the current weights and biases on the whole data set
            batch_predict = self.predict(self.X)

            # calculate the accuracy score of the prediction
            train_accuracy = accuracy_score(self.y, batch_predict)

            # add accuracy to the history
            self.accuracy_history.append(train_accuracy)

            # update rich progress bar for each epoch
            pb.update(t1, advance=1)

            if progress.finished:
                pb.update(t1, description="[bright_green]Training complete!")

forward(X) ⚓︎

Compute a single forward pass of the network.

Parameters:

Name Type Description Default
X 2d ndarray

The data to use for the forward pass. Must be of size n x input_n where input_n must come from the first DenseLayer in the network.

required

Returns:

Type Description
2d ndarray

An n x output_n array where output_n corresponds to the output_n of the last DenseLayer in the network and n is the number of data points.

Source code in mlproject/neural_net/_neural_net.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def forward(self, X):
    """Compute a single forward pass of the network.

    Parameters
    ----------
    X : 2d ndarray
        The data to use for the forward pass.
        Must be of size n x input_n
        where input_n must come from the first [`DenseLayer`][mlproject.neural_net._dense_layer.DenseLayer] in the network.

    Returns
    -------
    2d ndarray
        An n x output_n array
        where output_n corresponds to the output_n of the last [`DenseLayer`][mlproject.neural_net._dense_layer.DenseLayer] in the network
        and n is the number of data points.
    """
    self.activations.append(X)
    for layer in self.layers:
        X = layer.forward(X)
        self.activations.append(X)
        self.sums.append(layer.z)

    return X

predict(X) ⚓︎

Predict class labels for the given data.

Parameters:

Name Type Description Default
X 2d ndarray

The data that we want to use to make predictions.

required

Returns:

Type Description
1d ndarray

All predicted class labels with size n, where n is the number of data points.

Source code in mlproject/neural_net/_neural_net.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def predict(self, X):
    """Predict class labels for the given data.

    Parameters
    ----------
    X : 2d ndarray
        The data that we want to use to make predictions.

    Returns
    -------
    1d ndarray
        All predicted class labels with size n, where n is the number of data points.
    """
    probabilities = self.predict_proba(X)

    return np.array(
        [self.label[pred] for pred in np.argmax(probabilities, axis=1).astype(int)]
    )

predict_proba(X) ⚓︎

Predict class probabilities for the given data

Parameters:

Name Type Description Default
X 2d ndarray

The data that we want to use to make predictions

required

Returns:

Type Description
2d ndarray

All probabilites with size n x k, where n is the number of data points and k is the number classes

Source code in mlproject/neural_net/_neural_net.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def predict_proba(self, X):
    """Predict class probabilities for the given data

    Parameters
    ----------
    X : 2d ndarray
        The data that we want to use to make predictions

    Returns
    -------
    2d ndarray
        All probabilites with size n x k, where n is the number of data points and k is the number classes
    """
    return self.forward(X)