_activations
leaky_relu(z)
⚓︎
  Leaky relu activation function
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| z | 2d ndarray | input to the leaky relu activation function | required | 
Returns:
| Type | Description | 
|---|---|
| 2d ndarray | leaky relu 'activated' version of the input  | 
Source code in mlproject/neural_net/_activations.py
        | 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |  | 
leaky_relu_der(z)
⚓︎
  Derivative of the leaky relu activation function
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| z | 2d ndarray | input to calculate the derivative of | required | 
Returns:
| Type | Description | 
|---|---|
| 2d ndarray | derivative of the specific neuron with a leaky relu activation function | 
Source code in mlproject/neural_net/_activations.py
        | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |  | 
stable_softmax(z)
⚓︎
  Numerically stable softmax activation function
Inspired by https://stackoverflow.com/a/50425683 & https://github.com/scipy/scipy/blob/v1.9.3/scipy/special/_logsumexp.py#L130-L223
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| z | 2d ndarray | input to the softmax activation function | required | 
Returns:
| Type | Description | 
|---|---|
| 2d ndarray | softmax 'activated' version of the input  | 
Source code in mlproject/neural_net/_activations.py
        | 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |  |