_decision_tree
DecisionTreeClassifier
⚓︎
Decision Tree Classifier
Simple decision tree classifier with user specific impurity, max depth and minimum number of samples in leaf nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
criterion |
str, optional
|
The impurity criterion to use when splitting nodes, by default 'gini' |
'gini'
|
max_depth |
int, optional
|
The maximum depth of the decision tree, by default 100 |
100
|
min_samples_in_leaf |
int, optional
|
The minimum number of samples that need to be in a leaf, by default 2 |
2
|
Source code in mlproject/decision_tree/_decision_tree.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
fit(X, y)
⚓︎
Fit the decision tree to the given data
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
2d ndarray
|
The data to be used for fitting the decision tree |
required |
y |
2d ndarray
|
An array of the true labels for the data points |
required |
Source code in mlproject/decision_tree/_decision_tree.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|
predict(X)
⚓︎
Predict class labels for the given data.
For all data points in the dataset traverse the decision tree until it reaches a leaf node and return the majority class of that leaf node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
2d ndarray
|
The data that we want to use to make predictions. |
required |
Returns:
Type | Description |
---|---|
1d ndarray
|
All predicted class labels with size n, where n is the number of data points. |
Source code in mlproject/decision_tree/_decision_tree.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
predict_proba(X)
⚓︎
Predict class probabilities for the given data
For all data points in the dataset traverse the decision tree until it reaches a leaf node and return the class probabilities of that leaf node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
2d ndarray
|
The data that we want to use to make predictions |
required |
Returns:
Type | Description |
---|---|
2d ndarray
|
All probabilites with size n x k, where n is the number of data points and k is the number classes |
Source code in mlproject/decision_tree/_decision_tree.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|